Part Number Hot Search : 
JX322 2805S VE8825A B80C800 LYU5000 2SA1837 2SK24 05111
Product Description
Full Text Search
 

To Download APTCV50H60T3G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 APTCV50H60T3G
Full - Bridge NPT & Trench + Field Stop(R) IGBT Power module
Trench & Field Stop(R) IGBT Q1, Q3: VCES = 600V ; IC = 50A @ Tc = 80C CoolMOSTM Q2, Q4: VCES = 600V ; IC = 49A @ Tc = 25C
13 Q1 CR1 18 19 22 23 Q2
14 Q3 CR3 11 10 7 8 Q4 4 3
Application * Solar converter Features * Q2, Q4 CoolMOSTM - Ultra low RDSon - Low Miller capacitance - Ultra low gate charge - Avalanche energy rated * Q1, Q3 Trench & Field Stop IGBT(R) - Low voltage drop - Switching frequency up to 20 kHz - RBSOA & SCSOA rated - Low tail current * * * *
16 15
26 27
29 15
30 NTC
31
32 16
Top switches : Trench + Field Stop IGBT(R) Bottom switches : CoolMOSTM
28 27 26 25 29 30 23 22 20 19 18
Kelvin emitter for easy drive Very low stray inductance High level of integration Internal thermistor for temperature monitoring
Benefits Optimized conduction & switching losses Direct mounting to heatsink (isolated package) Low junction to case thermal resistance Solderable terminals both for power and signal for easy PCB mounting * Low profile * Easy paralleling due to positive TC of VCEsat * RoHS Compliant * * * *
31 32 2 3 4 7 8 10 11 12
14 13
All multiple inputs and outputs must be shorted together 13/14 ; 15/16 ; 26/27 ; 31/32
www.microsemi.com
1-9
APTCV50H60T3G - Rev 0
These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com
June, 2007
APTCV50H60T3G
All ratings @ Tj = 25C unless otherwise specified 1. Top switches 1.1 Top Trench + Field Stop IGBT(R) characteristics Absolute maximum ratings
Symbol VCES IC ICM VGE PD RBSOA Parameter Collector - Emitter Breakdown Voltage Continuous Collector Current Pulsed Collector Current Gate - Emitter Voltage Maximum Power Dissipation Reverse Bias Safe Operating Area TC = 25C TC = 80C TC = 25C TC = 25C TJ = 150C Max ratings 600 80 50 100 20 176 100A @ 550V Unit V A V W
Electrical Characteristics
Symbol Characteristic ICES VCE(sat) VGE(th) IGES Zero Gate Voltage Collector Current Collector Emitter Saturation Voltage Gate Threshold Voltage Gate - Emitter Leakage Current Test Conditions VGE = 0V, VCE = 600V Tj = 25C VGE =15V IC = 50A Tj = 150C VGE = VCE , IC = 600A VGE = 20V, VCE = 0V Min Typ 1.5 1.7 5.8 Max 250 1.9 6.5 600 Unit A V V nA
5.0
Dynamic Characteristics
Symbol Characteristic Cies Coes Cres Td(on) Tr Td(off) Tf Td(on) Tr Td(off) Tf Eon Eoff RthJC Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Switching Energy Turn-off Switching Energy Junction to Case Thermal resistance Test Conditions VGE = 0V VCE = 25V f = 1MHz Inductive Switching (25C) VGE = 15V VBus = 300V IC = 50A RG = 8.2 Inductive Switching (150C) VGE = 15V VBus = 300V IC = 50A RG = 8.2 VGE = 15V Tj = 25C VBus = 300V Tj = 150C IC = 50A Tj = 25C RG = 8.2 Tj = 150C Min Typ 3150 200 95 110 45 200 40 120 50 250 60 0.3 0.43 1.35 1.75 0.85 Max Unit pF
ns
ns
mJ
June, 2007 2-9 APTCV50H60T3G - Rev 0
mJ
C/W
www.microsemi.com
APTCV50H60T3G
1.2 Top fast diode characteristics
Symbol Characteristic VRRM IRM IF VF trr Qrr RthJC
Maximum Peak Repetitive Reverse Voltage
Test Conditions Tj = 25C Tj = 125C Tc = 80C IF = 30A IF = 60A IF = 30A IF = 30A VR = 400V di/dt =200A/s
Min 600
Typ
Max 25 500
Unit V A A
Maximum Reverse Leakage Current DC Forward Current Diode Forward Voltage
VR=600V
Tj = 125C Tj = 25C Tj = 125C Tj = 25C Tj = 125C
30 1.8 2.1 1.5 25 160 35 480
2.3 V
Reverse Recovery Time Reverse Recovery Charge Junction to Case Thermal resistance
ns nC 1.2
C/W
2. Bottom switches 2.1 Bottom CoolMOSTM characteristics Absolute maximum ratings
Symbol VDSS ID IDM VGS RDSon PD IAR EAR EAS Parameter Drain - Source Breakdown Voltage Continuous Drain Current Pulsed Drain current Gate - Source Voltage Drain - Source ON Resistance Maximum Power Dissipation Avalanche current (repetitive and non repetitive) Repetitive Avalanche Energy Single Pulse Avalanche Energy Tc = 25C Tc = 80C Max ratings 600 49 38 130 20 45 290 15 3 1900 Unit V A V m W A mJ
Tc = 25C
Electrical Characteristics
Symbol Characteristic IDSS RDS(on) VGS(th) IGSS Zero Gate Voltage Drain Current Drain - Source on Resistance Gate Threshold Voltage Gate - Source Leakage Current Test Conditions
VGS = 0V,VDS = 600V VGS = 0V,VDS = 600V
Min Tj = 25C Tj = 125C 2.1
Typ
www.microsemi.com
3-9
APTCV50H60T3G - Rev 0
June, 2007
VGS = 10V, ID = 24.5A VGS = VDS, ID = 3mA VGS = 20 V, VDS = 0V
40 3
Max 250 500 45 3.9 100
Unit A m V nA
APTCV50H60T3G
Dynamic Characteristics
Symbol Characteristic Ciss Input Capacitance Crss Reverse Transfer Capacitance Qg Qgs Qgd Td(on) Tr Td(off) Tf Eon Eoff Eon Eoff RthJC Total gate Charge Gate - Source Charge Gate - Drain Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Switching Energy Turn-off Switching Energy Turn-on Switching Energy Turn-off Switching Energy
Junction to Case Thermal resistance
Test Conditions VGS = 0V ; VDS = 25V f = 1MHz VGS = 10V VBus = 300V ID = 49A Inductive Switching (125C) VGS = 10V VBus = 400V ID = 49A RG = 4.7 Inductive switching @ 25C VGS = 10V ; VBus = 400V ID = 49A ; RG = 4.7 Inductive switching @ 125C VGS = 10V ; VBus = 400V ID = 49A ; RG = 4.7
Min
Typ 7.2 0.29 150 34 51 21 30 100 45 675 520 1100 635
Max
Unit nF
nC
ns
J
J 0.5
C/W
3. Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).
Symbol Characteristic R25 Resistance @ 25C B 25/85 T25 = 298.15 K
RT = R25 T: Thermistor temperature 1 1 RT: Thermistor value at T exp B25 / 85 T - T 25
Min
Typ 50 3952
Max
Unit k K
4. Package characteristics
Symbol VISOL TJ TSTG TC Torque Wt Characteristic
RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz
Operating junction temperature range Storage Temperature Range Operating Case Temperature Mounting torque Package Weight
To heatsink
M4
Min 2500 -40 -40 -40 2.5
Typ
Max 150* 125 100 4.7 110
Unit V C N.m g
Tj=175C for Trench & Field Stop IGBT
June, 2007
www.microsemi.com
4-9
APTCV50H60T3G - Rev 0
APTCV50H60T3G
5. SP3 Package outline (dimensions in mm)
1
See application note 1901 - Mounting Instructions for SP3 Power Modules on www.microsemi.com
6. Top switches curves 6.1 Top Trench + Field Stop IGBT(R) typical performance curves
Output Characteristics (VGE=15V) Output Characteristics 100
TJ = 150C VGE=19V
100
TJ=25C
80
IC (A)
TJ=125C
IC (A)
60 40 20 0 0 0.5 1
TJ=25C
TJ=150C
1.5 VCE (V)
2
2.5
3
100 80 60 40 20 0 5
Transfert Characteristics 3.5
TJ=25C
IC (A)
2 1.5 1
TJ=125C TJ=150C TJ=25C
0 11 12 0 20 40 IC (A) 60 80 100
6
7
8
9
10
VGE (V)
www.microsemi.com
5-9
APTCV50H60T3G - Rev 0
0.5
Eon
June, 2007
E (mJ)
17 12
28
80
VGE=13V
60
VGE=15V
40 20 0 0 0.5 1 1.5 2 VCE (V) 2.5 3 3.5
VGE=9V
Energy losses vs Collector Current 3 2.5
VCE = 300V VGE = 15V RG = 8.2 TJ = 150C Eoff
APTCV50H60T3G
Switching Energy Losses vs Gate Resistance 3 2.5 2 E (mJ) 1.5 1 0.5 0 5 15 25 35 45 55 Gate Resistance (ohms) 65
Eon Eoff
Reverse Bias Safe Operating Area 125 100 IC (A) 75 50 25 0 0 100 200 300 400 VCE (V) 500 600 700
VGE=15V TJ=150C RG=8.2
VCE = 300V VGE =15V IC = 50A TJ = 150C
maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 1 Thermal Impedance (C/W) 0.8 0.6 0.4 0.2 0.9 0.7 0.5 0.3 0.1 Single Pulse 0.0001 0.001 0.01 0.1 1 10
IGBT
0.05 0 0.00001
Rectangular Pulse Duration in Seconds
6.2 Top Fast diode typical performance curves
Forw ard Current vs Forw ard Voltage 120 IF, Forward Current (A) 100 80 60 40 20 0 0.0 0.5 1.0 1.5 2.0
T J=25C T J=-55C T J=1 25C
2.5
3.0
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration 1.4 Thermal Impedance (C/W) 1.2 1 0.8 0.6 0.4 0.2 0 0.00001 0.3 0.1 0.05 0.0001 0.001 Single Pulse 0.9 0.7 0.5
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
www.microsemi.com
6-9
APTCV50H60T3G - Rev 0
June, 2007
APTCV50H60T3G
7. Bottom switches curves 7.1 Bottom CoolMOSTM typical performance curves
0.6 Thermal Impedance (C/W) 0.5 0.4 0.3 0.2 0.1 Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
0.9 0.7 0.5 0.3 0.1 0.05 0.0001 Single Pulse 0.001 0.01 0.1 1 10
0 0.00001
rectangular Pulse Duration (Seconds) Low Voltage Output Characteristics 360 320 ID, Drain Current (A) 280 240 200 160 120 80 40 0 0 5 10 15 20 VDS, Drain to Source Voltage (V) RDS(on) vs Drain Current 1.3 1.2 1.15 1.1 1.05 1 0.95 0.9 0 20 40 60 80 100 120 140 ID, Drain Current (A)
VGS=20V 5V 4.5V 4V VGS=15&10V
Transfert Characteristics 140 ID, Drain Current (A) 120 100 80 60 40 20 0 25 0 1 2 3 4 5 6 VGS, Gate to Source Voltage (V) 7
TJ=125C TJ=25C TJ=-55C VDS > ID(on)xRDS(on)MAX 250s pulse test @ < 0.5 duty cycle
6.5V 6V 5.5V
ID, DC Drain Current (A)
1.25
Normalized to VGS=10V @ 50A
VGS=10V
DC Drain Current vs Case Temperature 50 45 40 35 30 25 20 15 10 5 0 25 50 75 100 125 150 TC, Case Temperature (C)
RDS(on) Drain to Source ON Resistance
www.microsemi.com
7-9
APTCV50H60T3G - Rev 0
June, 2007
APTCV50H60T3G
RDS(on), Drain to Source ON resistance (Normalized) Breakdown Voltage vs Temperature BVDSS, Drain to Source Breakdown Voltage (Normalized) 1.2 1.1 1.0 0.9 0.8 0.7 -50 -25 0 25 50 75 100 125 150 TJ, Junction Temperature (C) Threshold Voltage vs Temperature 1.2 VGS(TH), Threshold Voltage (Normalized) 1.1 1.0 0.9 0.8 0.7 0.6 -50 -25 0 25 50 75 100 125 150 TC, Case Temperature (C) Capacitance vs Drain to Source Voltage 100000 Coss C, Capacitance (pF) 10000 Ciss 1000 ID, Drain Current (A) ON resistance vs Temperature
3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 150 TJ, Junction Temperature (C)
Maximum Safe Operating Area
VGS=10V ID= 50A
100
limited by RDSon
100 s
10
Single pulse TJ=150C TC=25C
1 ms 10 ms
1 1 10 100 1000 VDS, Drain to Source Voltage (V) Gate Charge vs Gate to Source Voltage VGS, Gate to Source Voltage (V) 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 Gate Charge (nC)
VDS=480V
ID=50A TJ=25C
VDS=120V VDS=300V
1000 Crss
100
10 0 10 20 30 40 50 VDS, Drain to Source Voltage (V)
www.microsemi.com
8-9
APTCV50H60T3G - Rev 0
June, 2007
APTCV50H60T3G
140 120
td(on) and td(off) (ns) Delay Times vs Current 70
td(off) VDS=400V RG=5 TJ=125C L=100H td(on)
Rise and Fall times vs Current 60 tr and tf (ns) 50 40 30 20 10 tr
VDS=400V RG=5 TJ=125C L=100H
100 80 60 40 20 0 0 10 20 30 40 50
tf
60 70 80
0 0 10 20 30 40 50 60 70 80 ID, Drain Current (A) Switching Energy vs Gate Resistance 2.5 Switching Energy (mJ) 2 1.5 1 0.5 0
VDS=400V ID=50A TJ=125C L=100H
ID, Drain Current (A) Switching Energy vs Current 2 Switching Energy (mJ) 1.6 1.2 Eoff 0.8 0.4 0 0 10 20 30 40 50 60 ID, Drain Current (A) 70 80
VDS=400V RG=5 TJ=125C L=100H
Eon
Eoff Eon
0
10
20
30
40
50
Gate Resistance (Ohms) Source to Drain Diode Forward Voltage 1000
Operating Frequency vs Drain Current 300
ZVS VDS=400V D=50% RG=5 TJ=125C TC=75C
250 Frequency (kHz) 200 150 100 50 0 5
hard switching ZCS
IDR, Reverse Drain Current (A)
100
TJ=150C
10
TJ=25C
1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 VSD, Source to Drain Voltage (V)
10 15 20 25 30 35 40 45 50 ID, Drain Current (A)
Microsemi reserves the right to change, without notice, the specifications and information contained herein "COOLMOSTM comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG".
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.
www.microsemi.com
9-9
APTCV50H60T3G - Rev 0
June, 2007


▲Up To Search▲   

 
Price & Availability of APTCV50H60T3G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X